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The next decade will increasingly rely on predictive modeling for scientific discovery, decision
making, and safety-critical forecasting. Future success in these settings will require predictive
models that are not only powerful—capable of processing large quantities of complex data—but also
reliable—capable of codifying expert knowledge (e.g. how to extrapolate beyond observed data)
and quantifying what is unknown due to limited observations. Unfortunately, today’s machine
learning models are often incapable of satisfying both desiderata. For example, the predictive
power of neural networks often comes at the cost of erratic extrapolation and spurious correlation.
Conversely, the inductive biases and uncertainty quantification afforded by probabilistic models are
rarely suited for the scale and complexity of modern datasets. My research aims to eliminate this
tradeoff; creating powerful and reliable predictive models. Specifically, I will develop models for
three key problems: 1) large-scale spatio-temporal modeling, for inferences in the physical sciences;
2) uncertainty-aware blackbox optimization, for decision making in engineering; and 3) robust
neural network ensembling, for forecasts in safety-critical settings.

1) LARGE-SCALE SPATIO-TEMPORAL MODELING

Many problems throughout the physical sciences involve inferring some latent quantity from
collections of spatially-correlated signals or time series. A illustration from astronomy is locating
“dust” in the Milky Way from observations of starlight extinctions [41]. Probabilistic models, espe-
cially Gaussian processes (GPs), have historically been used for such inferences in geostatistics [22],
neuroscience [8], and epidemiology [34], in large part because of their formalism for incorporating
prior domain knowledge and quantifying uncertainty. Unfortunately, GPs are often ill-suited
for modern datasets: lacking both 1) the ability to scale to large datasets and 2) the ability to
readily model non-stationary and high-dimensional data. My prior research has addressed the first
challenge. In a series of papers [15, 25, 26, 38], I revamped the numerical algorithms underpinning
GP inference, utilizing memory-efficient iterative methods that are extremely amenable to GPU
acceleration. My approach enabled exact GP inference on millions of data points [36]—a significant
two-orders-of-magnitude improvement over prior work [9]. With this scalability in place, my
current and future research aims to address the second challenge of modeling complex phenomena.
In pursuit of this goal, I am focusing on two key directions:

Relaxing invariance assumptions. Many spatio-temporal GPs assume invariances, such as sta-
tionarity, which are often violated by naturally-occurring discontinuities in large-scale and high-
dimensional datasets. Rather than completely abandoning such invariance assumptions (as pro-
posed in [e.g. 29]), I propose the development of approximately-invariant GPs: models biased towards
invariances but flexible enough to model discontinuities. In recent theoretical work [24], I demon-
strate that deep (hierarchical) GP models encode a relaxed notion of stationarity, with the width of
hidden layers controlling the degree of relaxation. The next major undertaking is to make these
models practical, using an algorithmic approach for designing approximately-invariant versions of
simple GPs, alongside further theoretical work to characterize their functional properties.

Simplifying optimization dynamics. Model selection and approximate inference with spatio-
temporal GPs is typically cast as gradient-based optimization, enabling highly parametric priors
(e.g. spectral kernels [39] or deep kernels [40]) capable of extrapolating on complex data modalities.
However, the optimization dynamics associated with these tasks are often quite unfavorable.
Pathologies even emerge for model selection in Bayesian linear regression [32], and the optimization
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dynamics become increasingly worse for more complex GP models [21]. Alleviating these barriers
is necessary to make these powerful models simpler and more accessible to non-expert practitioners.
To that end, I have begun developing theoretical analyses of gradient-based model selection for
GPs [28, 37]. Utilizing these findings, I aim to redesign spectral kernels and deep kernels to
improve optimization dynamics, reducing the need for careful initializations and hand-tuned
procedures. Further extending this theory to hierarchical GP models—in which model selection
and approximate inference are often performed simultaneously—will greatly extend the predictive
capabilities and usability of spatio-temporal models.

2) UNCERTAINTY-AWARE BLACKBOX OPTIMIZATION

Design problems throughout science and engineering often cannot be translated into mathematical
models, making them ill-suited for traditional optimization techniques. Bayesian optimization (BO)
is a powerful method whereby these blackbox functions are modelled by probabilistic surrogates
(typically GPs) and the surrogates’ posterior uncertainty guides the exploration-vs-exploitation
tradeoff. With recent advances in high-dimensional techniques [e.g. 11, 13] and GP scalability
(see Sec. 1 for examples from my prior research), there is growing interest in applying BO in
challenging applications like drug discovery [31] and nuclear fusion control [7]. However, existing
BO pipelines neglect several sources of modeling error, which—although relatively inconsequential
in small-scale BO problems—significantly hinder optimization in complex and large-scale settings
[19, 25]. Building upon my ongoing work [26, 38], I aim to represent these modeling errors as
additional sources of uncertainty that inform the exploration-vs-exploitation tradeoff:

Optimizing with computational uncertainty. The BO workflow often relies numerous computa-
tional shortcuts to maintain tractability, such as 1) ignoring the influence of GP hyperparameters,
2) restricting the search space to a small discrete set of candidate points, and/or 3) utilizing sparse
approximations of the GP posterior [20]. As problem complexity increases, these shortcuts become
more necessary but can lead to erroneous solutions if not accounted for in the modeling process
[25, 26]. To mitigate this issues, I have begun developing a framework of computational uncertainty
that captures approximation error resulting from limited computation (just as posterior uncertainty
captures modeling error due to limited data). In preliminary work, I introduce a family of GP
approximations where the resulting predictive distribution incorporates both sources of uncertainty
[38]. I aim to extend this notion of computational uncertainty to all components of the BO pipeline,
including hyperparameter optimization and candidate point selection. Of course, computational
uncertainty is only beneficial if it is incorporated into the optimization procedure; therefore, I will
pursue computation-aware search policies where this uncertainty is used to enhance optimization.

Optimizing with objective uncertainty. In complex design problems (e.g. drug discovery), it
is often necessary to use imperfect proxies or surrogate metrics (e.g. computer simulations of
molecular binding affinity) as substitute measures for the true desired behavior (e.g. efficacy of
the drug). This discrepancy introduces numerous pathologies, such as adversarial solutions that
exploit flaws in the proxy metric or solutions that fail to trade off multiple desired objectives. While
prior works have proposed one-off strategies to address these issues [e.g. 10, 19], I propose an
overarching framework for optimizing under objective uncertainty. The framework will treat the true
desired outcomes as latent variables under a biased observation model, with search policies that
effectively use posterior uncertainty and objective uncertainty (and also computational uncertainty).
The mechanisms to quantify objective uncertainty will depend on the available side information,
ranging from human-in-the-loop feedback to generative models from related problem areas.
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3) ROBUST NEURAL NETWORK ENSEMBLES

As neural networks become prominent in high-stakes applications like autonomous driving, pre-
cision medicine, and automated finance, it is crucial to mitigate against catastrophic erroneous
predictions. A significant portion of my prior work has focused on addressing the risks of overcon-
fidence [16], observational noise [27], and covariate shift [2]. Of the many proposed approaches,
ensembles of neural networks (or approximations thereof) have become the prevailing method
to reduce these risks [18, 23, 33], based on long-standing intuitions that the diversity amongst
independently-trained models prevents correlated errors [14]. However, my recent research demon-
strates that these intuitions—largely derived from ensembles of low-capacity models (e.g. random
forests [6])—can be entirely misleading for ensembles of high-capacity neural networks. In particu-
lar, ensembles of neural networks improve when predictive diversity is minimized [1, 3] and do not
provide additional uncertainty/robustness beyond what can be achieved with a standalone (but
larger) neural network [2]. These findings expose a chasm between intuition and practice, with
immediate implications for uncertainty quantification, robustness, and safety considerations. I am
thus pursuing two directions to improve the foundations of neural network ensembles:

Understanding overparameterized ensembles. The success of ensemble methods essentially boils
down to variance reduction [5, 12]. At the same time, recent theoretical work on overparameterized
neural networks suggests that increasing capacity (e.g. width or depth) also amounts to variance
reduction [4] (in contrast to underparameterized models, where additional capacity increases
variance). My recent empirical results suggest that both strategies—ensembling and increasing
capacity—yield predictions that are almost indistinguishable [2]. This functional similarity between
ensembles and single (larger) neural networks—the latter of which are considered unreliable, brittle,
and overconfident [23]—suggests that current ensembles are also fundamentally insufficient for
safety-critical settings. To support these empirical findings, I am developing theoretical characteri-
zations of ensembling in overparameterized random feature models. This analysis investigates
1) the degree of functional similarity between ensembles and single models and 2) how architectural
choices (e.g. width, non-linearity, etc.) influence this similarity. A deeper understanding of the
relationship between ensembles and single (larger) models will illuminate to what extent existing
ensembles can or cannot offer meaningful uncertainty quantification/robustness.

Ensembling beyond arithmetic averaging. Although current ensembles may be functionally
similar to standalone neural networks, there is reason to believe that simple modifications could
yield vastly improved predictive capabilities. One underexplored area is the flexibility afforded by
the “voting mechanism”—i.e. the reduction that combines multiple models into a single prediction.
Currently, it is common to use the arithmetic or geometric mean of component model predictions
[17]. However, there exists a wide range of other possible reductions, each with distinct properties.
I propose an objective aware ensembling framework where, given a target risk function, the optimal
reduction for a set of existing pretrained models is selected as a postprocessing step. This framework
allows pretrained neural networks to be reused to achieve different desired outcomes (e.g. accuracy,
calibration, robustness to outliers, etc.) simply by adjusting the reduction. As an initial step,
one could consider a simple parametric family of reductions—e.g. averages defined by simple
one-dimensional polynomials—learned through a small hold-out validation set (in the same vein
as [16]). To further enhance predictive capabilities, this approach can be extended to input-dependent
reduction algorithms, drawing from existing work on mixture-of-expert and attention mechanisms
[30, 35]. This approach holds the potential for many new ensemble methods that could offer
meaningful reliability improvements necessary for safety-critical settings.
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